Vermont Talent Search School Year 2010-2011

Test 2 Solutions

Problem 1.

An ellipse E has two circles, C1 and C2, inscribed in it, such that C1's center is the center of E and C2's center is one of the two foci of E. If C1 is a unit circle and C1 and C2 are externally tangent, find the area of E.

Solution: Let A be the center of C2, X be a point of tangency of C2 to E, and B be the other focus of E. Also let £ be the tangent line to C2 and E at X. It is a well-known property of ellipses that AX and BX make the same (non-obtuse) angle with £ -- an equivalent interpretation of this statement is that a ray originating at one focus and bouncing off any point on the ellipse will pass through the other focus.

However, AX is perpendicular to £, since £ is the tangent line to the circle C2, and therefore BX is also perpendicular to £. So in fact A, B, and X are collinear, or, in other words, X lies on the major axis of E. Hence X is an endpoint of the major axis. Therefore, if the radius of C2 is r, the length of the major axis is 2 + 4 r. Now, since the sum of the distances of any point on an ellipse to the foci is constant, and the length of the semi-minor axis is 1, we can write $2\sqrt{1+(r+1)^2} = 2+4r$.

So
$$[1+(r+1)^2]=(1+2r)^2$$
 so $3r^2+2r-1=0$ and $r=\frac{1}{3}$ or $r=-1$, but since $r>0$ we conclude that $r=\frac{1}{3}$. Thus the semimajor axis of E has length $1+2r=\frac{5}{3}$ so the area of ellipse E is $\pi\left(\frac{5}{3}\right)(1)=\frac{5}{3}\pi$.

Problem 2.

Find the remainder when $f(x) = x^{57} + x^{19} + x^9 + 2010$ is divided by $x^3 - x$.

Solution:

The remainder can be found by careful long division, but alternatively students may recall the division algorithm: If f(x) and g(x) are polynomials and the degree of g(x) is less than or equal to the degree of f(x), then there exists unique polynomials g(x)

and
$$r(x)$$
 such that $\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$; $g(x) \neq 0$ and the degree of $r(x)$ is less than the degree of $g(x)$. So let $g(x) = x^3 - x = x(x+1)(x-1)$

Then
$$\frac{f(x)}{g(x)} = q(x) + \frac{ax^2 + bx + c}{x^3 - x}$$
 or $f(x) = x(x+1)(x-1)q(x) + ax^2 + bx + c$

Thus

$$f(0) = c = 2010$$

$$f(1) = 1 + 1 + 1 + 2010 = a + b + 2010$$
 or $a + b = 3$

$$f(-1) = -3 + 2010 = a - b + 2010$$
 or $a - b = -3$

Solving for a and b yields a = 0, b = 3, so remainder r(x) = 3x + 2010

Problem 3.

In acute triangle ABC, altitudes AY and BX are drawn to sides BC and AC respectively. If BY = 20 and AY = 99, find the sine of angle AXY.

Solution:

Let AB be the diameter of a circle.

Thus the circle will pass through points X and Y as shown.

Since
$$(AB)^2 = 20^2 + 99^2$$
; $AB = 101$

Let $\angle BAY$ and $\angle BXY = \theta$ since they are both equal to $\{\frac{1}{2}arcBY\}$

$$\angle AXY = 90 + \theta$$

 $\sin(90 + \theta) = \cos\theta$

In
$$\triangle ABY$$
, $\cos \theta = \frac{99}{101}$

Problem 4.

The first, second and third terms of an arithmetic progression (AP) are $x^2 - 6x + 4$, $3x^2 - 11x + 2$, and $2x^2 - x - 12$ respectively.

The n^{th} term of the progression equals -2011. Find n.

Solution:

To find the difference in the arithmetic progression:

$$(2x^2-x-12)-(3x^2-11x+2)=(3x^2-11x+2)-(x^2-6x+4)$$

$$3x^2 - 15x + 12 = 0$$
 or $x^2 - 5x + 4 = 0$

$$(x-1)(x-4) = 0$$
 and $x = 1, 4$

If x = 4, the A.P. is -4, 6, 16... and no term is equal to -2011.

If x = 1, the A.P. is -1, -6, -11... so use l = a + (n-1)d to find n

$$-2011 = -1 + (n-1)(-5)$$

$$402 = n - 1$$
 and finally $n = 403$

Problem 5.

It's well known that country music songs often emphasize love, prisons and trucks. A recent survey found the following:

- a. 12 songs were about a truck driver who was in love while in prison.
- b. 13 songs were about a prisoner in love.
- c. 18 were about truck driver in love.
- d. 28 were about a person in love.
- e. 3 were about a truck driver in prison, but not in love.
- f. 16 were about truck drivers who were not in prison.
- g. 8 were about a person out of prison, who is not in love, and didn't drive a truck.
- h. 2 songs were about a prisoner who was not in love and didn't drive a truck.

Find a) the number songs in the survey

- b) the number of songs about
 - 1. truck drivers
 - 2. prisoners
 - 3. truck drivers in prison
 - 4. people not in prison
 - 5. people not in love

Solution:

It's helpful to drawn a Venn diagram as follows.

First immediately observe that there are 8 songs not included in love songs, trucks songs or prison songs as stated in the given information, Item *g*.

Next we see from Items a. and e. that there are 12+3=15 truck drivers in prison.

Then we can use Item *b*. to conclude there is only 1 song about a prisoner in love.

Now we see, using Item c. that there must be 6 truck drivers in love but not in prison since 12+6=18

solution cont'd

We now have this and using Item h. we can say there are 12+3+1+2=18 prisoner songs.

Can also say, using Item *d*. there are 28-6-12-1=9 songs about love only

Thus total number of songs surveyed is 10+6+12+3+2+1+9+8=51

Finally since we determined above that 18 songs are about people in prison, there are 51-18=33 songs about people not in prison.

Similarly there are

$$51 - (9 + 6 + 12 + 1) = 23$$
 about people not in love.

So in summary

- a) the number songs in the survey 51
- b) the number of songs about
 - 1. truck drivers 31
 2. prisoners 18
 - 3. truck drivers in prison 15
 - 4. people not in prison5. people not in love23

Problem 6.

Three distinct integers are randomly chosen from the set $S = \{1, 2, 3...10\}$. What is the probability that their product is a perfect cube.

Solution:

We are looking for ordered triples (t, u, v) with t < u < v and $t \cdot u \cdot v = n^3$. Observe that any prime dividing t must also divide n, since u and v are integers.

If t = 1, then the maximum product is $1 \cdot 10 \cdot 9 = 90$ so the possibilities are 2^3 , 3^3 and 4^3 . For 2^3 we get (1,2,4). For 3^3 only (1,3,9) works and for 4^3 there is no solution. If t = 2 the maximum product is $2 \cdot 10 \cdot 9 = 180 < 216 = 6^3$ so the only possibility is 4^3 which yields (2,4,8) since $4 \cdot 8$ is the only way to get $\frac{4^3}{2} = 32$.

If t = 3, the only possibility is 6^3 , yielding (3,8,9) since 8.9 is the only possible way to get $\frac{6^3}{3} = 72$.

If t = 4, the maximum product is 360 so it is not possible to get 8^3 , so 6^3 is the only possibility yielding (4,6,9) since $6 \cdot 9$ is the only way to get $\frac{6^3}{4} = 54$.

If $t \ge 5$ there are no solutions since t^3 is not allowed. For $t \ne 8,9$ this follows immediately from the prime factors observation and for t = 8,9 it is clear there are no more solutions.

So we have 5 ordered triples; namely (1,2,4),(1,3,9),(2,4,8),(3,8,9) and (4,6,9).

There are "10 choose 3" or $\binom{10}{3} = \frac{10 \cdot 9 \cdot 8}{6} = 120$ possible ordered triples from set S so the

answer is
$$\frac{5}{120} = \frac{1}{24}$$

Alternate Solution:

Consider the prime factorization of each element in the set S.

1; 2; 3;
$$4 = 2x2$$
; 5; $6=2x3$; 7; $8 = 2x2x2$; $9 = 3x3$; $10=2x5$

Determine if the product of three of these elements will generate a perfect cube.

 $1^3 = 1$ impossible; $2^3 = 8$ and $1 \times 2 \times 4 = 2 \times 2 \times 2 = 8$; $3^3 = 27$ and $1 \times 3 \times 9 = 3 \times 3 \times 3 = 27$;

 $4^{3} = 64$ and 2x4x8 = 4x4x4 = 64; $5^{3} = 125$ there are only two factors of 5 in the set S;

 $6^3 = 216$ 4x6x9 = 2x2x2x3x3x3 = 216 or 3x8x9 = 3x2x2x2x3x3 = 216;

7³ impossible – there is only one factor of 7;

 8^3 impossible – there are not enough factors of 2 or 8; 9^3 impossible – there are not enough factors of 3 or 9; 10^3 impossible – there are not enough factors of 5.

In the case 2^3 where $1 \times 2 \times 4$ generates the product 8. There are 6 ways of choosing these 3 elements. 1x2x4; 1x4x2; 2x1x4; 2x4x1; 4x1x2; 4x2x1. Considering the set S we have five possibilities for perfect cubes, we then have 6x5 or 30 chances to get a perfect cube.

The number of possible outcomes is $10 \times 9 \times 8 = 720$. 30/720 = 1/24 as the probability of getting a perfect cube.

Problem 7

The equation $x^3 + ax^2 + bx + c = 0$ has real non-zero roots. If two of the roots are addition inverses and two are multiplicative inverses, determine the maximum possible value of (b+c).

Solution:

The roots must be as follows: r, -r, and $\frac{1}{r}$.

For the equation as given, the product of the roots is $c = -(r)(-r)\left(\frac{1}{r}\right) = r$

Sum of the root pairs: $b = -r^2 + 1 - 1 = -r^2$

Note: Many students may have committed to memory the relationship between polynomial roots and coefficient values, but these are also easily derived. Let $x^3 + ax^2 + bx + c = (x - p)(x - q)(x - r)$.

Now expand and collect terms to get a = -(p+q+r), b = (pq+rp+rq), c = -rpq.

Thus $(b+c) = -r^2 + r$ which can be maximized by completing the square...

$$-\left(r^2 - r + \frac{1}{4}\right) + \frac{1}{4} = \frac{1}{4} - \left(r - \frac{1}{2}\right)^2$$

As $r \to \frac{1}{2}$ the expression reaches a maximum value of $\frac{1}{4}$.

Problem 8.

A positive integer N leaves a remainder of 1 when divided by 3, a remainder of 3 when divided by 5, a remainder of 5 when divided by 7, a remainder of 7 when divided by 9 and a remainder of 10 when divided by 11. Find the smallest such N.

Solution:

First observe that subtracting 2 from any multiple of 3 leaves a remainder of 1 after division by 3.

Now smallest number, N, with a remainder of 3 when divided by 5 is 13 and 13 is indeed 2 less than a multiple of 3. To keep remainders the same after division by 3 and 5, add multiples of 15 to N until division by 7 yields a remainder of 5. This occurs at N = 103. Again, to keep constant remainders add multiples of (3)(5)(7) = 105 to 103 until division by 9 yields a remainder of 7. This results is N = 313. Now add multiples of (5)(7)(9) = 315 to 313 until sum is divisible by 11 with remainder of 10. Thus N = 2518.

Editor's Trivia Note:

In the Greek alphabet π is the 16th letter and 16 is the square of 4. In the English alphabet p is also the 16th letter and i is the 9th letter and 9 is the square of 3. Add them up (16+9), and you get 25, the square of 5. Multiply them and you get 144, the square of 12.

Divide 9 by 16 and you get 0.5625 which is the square of 0.75.

Is it any wonder they say " π are squared"