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1. Kiran has 2020 red blocks, labeled with the integers from 1 to 2020 inclusive, and Evan has 2020 blue blocks,
also labeled with the integers from 1 to 2020 inclusive. Kiran and Evan group their blocks together into pairs,
with one red block paired with one blue block, in such a way that the sum of the labels of the blocks in each
pair is a power of 2. They then evaluate the product of the numbers on each pair of blocks. What is the sum
of the 2020 products that Kiran and Evan obtain?

Answer: 1 430 125 898.

Solution: The largest possible sum of two block numbers is 2020 + 2020 = 4040 < 4096 = 212. Therefore,
the only possible way to pair a block of either color whose label is an integer n ≥ 210 is to pair it with
the block 211 − n to make a sum of 211 = 2048.

Thus, we see that the red blocks of labels 2020, 2019, 2018, ... , 1024 must pair with the blue blocks
of labels 28, 29, ... , 1024, and likewise the blue blocks of labels 2020, 2019, 2018, ... , 1024 must pair
with the red block of labels 28, 29, ... , 1024. Once these pairings are made, the only blocks remaining
are red blocks 1-27 and blue blocks 1-27. By the same logic, the only possible pairings of a block with
label n ≥ 16 is with the block 32− n, so we pair blocks 5 red-27 blue, 6 red-26 blue, ... , 27 red-5 blue.
This leaves the red and blue blocks labeled 1-4, and applying the same logic again shows that the only
possible pairing is 4 red-4 blue, 3 red-1 blue, 2 red-2 blue, 1 red-3 blue.

Then the desired sum is [2020·28+2019·29+· · ·+28·2020]+[5·27+6·26+· · ·+27·5]+[4·4]+[3·1+2·2+1·3].
We can evaluate the �rst two sums using the identity 1 ·n+2 ·(n−1)+ · · ·+n ·1 =

1

6
n(n+1)(n+2) which

can be established either via induction or by using the formulas for 1+2+ · · ·+n and 12+22+ · · ·+n2.
We get [2020·28+2019·29+· · ·+28·2020]+[5·27+6·26+· · ·+27·5]+[4·4]+[3·1+2·2+1·3] = 1 430 125 898 .

2. The roots of the polynomial 3x2 + 7x+ k are sec(θ) and tan(θ) for some angle θ with 0 ≤ θ ≤ 2π. Determine
the value of k.

Answer:
580

147
.

Solution: If sec(θ) and tan(θ) are the roots of 3x2+7x+k, then we must have 3x2+7x+k = 3(x−sec(θ))(x−
tan(θ)) and so by multiplying out and comparing coe�cients we see that sec(θ) + tan(θ) = −7

3
.

Since (sec θ + tan θ)(sec θ − tan θ) = sec2 θ − tan2 θ = 1, we must have sec θ − tan θ = −3

7
.

Adding the equations yields 2 sec(θ) = −58

21
and so sec(θ) = −29

21
, and then tan(θ) = −20

21
.

Finally, we obtain k = 3 sec(θ) tan(θ) =
580

147
.
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3. A convex pentagon has consecutive side lengths of d, d, d, d, and 5
√
11. If there exists a circle of radius 9

passing through all of its vertices, �nd all possible values of d2.

Answer: 27, 162− 27
√
11.

Solution: Write r = 9 and a = 5
√
11. Then the angle subtended by each side of length d is 2 arcsin(

d

2r
)

while the angle subtended by the side of length a is 2 arcsin(
a

2r
). If the center of the circle is contained

in the pentagon, then the sum of these �ve angles must be 2π radians, while if the center of the circle
is not contained in the pentagon, then one of the angles is equal to the sum of the other four. In the

�rst case, this yields the equation 4 arcsin(
d

2r
)+ arcsin(

a

2r
) = π, while in the second case, this yields the

equation 4 arcsin(
d

2r
) = arcsin(

a

2r
).

Collectively, these two cases both imply that sin

[
4 arcsin(

d

2r
)

]
= sin

[
arcsin(

a

2r
)
]
. By using the identity

sin(4θ) = 4 sin(θ)
√
1− sin2(θ)[1 − 2 sin2(θ)], this equation yields 2 · d

2r

√
1− d2

4r2
· (1 − d2

2r2
) =

a

2r
.

Squaring both sides and clearing denominators yields d2(4r2 − d2) · (2r2 − d2)2 = a2r6.

Plugging in the given numbers and setting x = d2 then yields the equation x(324 − x)(162 − x)2 =
146146275, so we obtain the equation x4 − 648x3 + 131220x2 − 8503056x + 146146275 = 0. Factoring
yields (x − 27)(x − 297)(x2 − 324x + 18225) = 0 and so we obtain four possible solutions x = 27, 297,
and 162± 27

√
11.

However, the two solutions d2 = 297 and d2 = 162 + 27
√
11 are extraneous, because we must have

d < 9
√
2 in order for the pentagon to exist. The other two solutions d2 = 27, 162− 27

√
11 do yield

actual pentagons.

4. Let d be the greatest common divisor of 22019
2018 − 2 and 22019

2020 − 2. Compute the value of log2(d+ 2).

Answer: 20192 = 4076 361.

Solution: Clearly, d is even since both 22019
2018 − 2 and 22019

2020 − 2 are even, so write d = 2k: then k is the
greatest common divisor of 22019

2018−1 − 1 and 22019
2020−1 − 1 and log2(d+ 2) = 1 + log2(k + 1). Next,

we apply the following Lemma:

Lemma: If m, a, and b are integers, then gcd(ma − 1,mb − 1) = mgcd(a,b) − 1.

Proof: Write b = qa + r where 0 ≤ r < a. Then we can easily check that mb − 1 = mqa+r − 1 =
mr(mqa− 1)+ (mr − 1), and so since mqa− 1 is divisible by ma− 1 because we can write mqa− 1 =
(ma − 1)(ma(q−1) +ma(q−2) + · · · +ma + 1), we see that the remainder upon dividing mb − 1 by
ma − 1 is mr − 1.
Thus, gcd(mb−1,ma−1) = gcd(ma−1,mr−1). This means that applying one step of the Euclidean
algorithm will not change the gcd of the two powers. Then it is easy to see that applying the full
Euclidean algorithm to the two powers will produce a gcd of mgcd(a,b) − 1, as claimed.

By applying the Lemma with m = 2, a = 20192018, and b = 20192020, we see k = gcd(22019
2018−1 −

1, 22019
2020−1−1) = 2gcd(2019

2018−1,20192020−1)−1, so it remains to determine gcd(20192018−1, 20192020−1).
But by another application of the Lemma with m = 2019, a = 2018, and b = 2020, we see that
gcd(20192018 − 1, 20192020 − 1) = 2019gcd(2018,2020) − 1 = 20192 − 1. Therefore, k = 22019

2−1 − 1 and so

log2(d+ 2) = 1 + log2(k + 1) = 1 + 20192 − 1 = 20192 = 4076 361 .
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5. Two congruent spheres with disjoint interiors are both contained inside a regular tetrahedron of side length
6. Determine the greatest possible value for the shared radius of the spheres.

Answer:
3
√
6− 3

5
.

Solution 1: We can see that by sliding the spheres slightly to one side or the other (and then increasing the
shared radius if possible) the maximum possible radius will occur when the two spheres are tangent to
each other and three of the four faces of the tetrahedron, as shown below.

Let the tetrahedron be ABCD, and without loss of generality assume that sphere E is tangent to faces
A, B, and C and sphere F is tangent to faces A, B, and D (where we label each face by the opposite
vertex). Also let the center of the tetrahedron be O and the shared radius of spheres E and F be r.
Then by symmetry, E lies in segment OD and F lies on segment OC. A cross-section through plane
OCD is given above.

Furthermore, if G is the center of face ACD and K is the point of tangency between sphere E and face
ACD, then triangle EKC is similar to triangle OGC.

From standard properties of equilateral triangles and regular tetrahedra (as follows from a few applica-

tions of the Pythagorean theorem), we have OC = OD =
3

2

√
6, CG = 2

√
3, and OG =

1

2

√
6. Therefore,

since 4EKC is similar to 4OGC and EK = r, we have CE = 3r.

By symmetry we also have DF = 3r, and then we obtain OE = OF =
3

2

√
6− 3r. Since the spheres are

tangent we also have EF = 2r. Filling in all these lengths yields the labeled diagram below.

Finally, since 4OEF is similar to 4OCD by symmetry, we see that
OE

EF
=

OC

CD
, which yields the

relation

3

2

√
6− 3r

2r
=

3

2

√
6

6
. Clearing the denominators yields 3

√
6 = r(6 +

√
6), so that r =

3
√
6

6 +
√
6
=

3√
6 + 1

=
3
√
6− 3

5
upon rationalizing the denominator.
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Solution 2: As above, we �rst note that maximum possible radius will occur when the two spheres are
tangent to each other and three of the four faces of the tetrahedron. We then see that both spheres are
separately inscribed in a pyramid obtained by bisecting ABCD along a plane passing through A, B, and
the midpoint X of CD. Thus, the radius r is the radius of the sphere inscribed in tetrahedron ABCX.

By drawing segments OA, OB, OC, and OX, we divide ABCX into four smaller tetrahedra each with a
height r and whose bases are the four respective faces of ABCX. Since the sum of the volumes of these

tetrahedra is the volume V of ABCX, we deduce that
1

3
r · ([ABC] + [ABX] + [ACX] + [BCX]) = V ,

and therefore r =
3V

[ABC] + [ABX] + [ACX] + [BCX]
=

3 · 9
√
2

9
√
3 + 9

√
2 + 9

2

√
3 + 9

2

√
3

=
3
√
2

2
√
3 +
√
2

=

3
√
6− 3

5
upon rationalizing the denominator.

Remark: The method described in solution 2 yields the formula for the inradius of an arbitrary tetrahedron

analogous to the inradius formula r =
2K

a+ b+ c
for a triangle.

6. Suppose that
√
5 is expressed in base 3, as 2.0201013 · · · = 1.d1d2d3d4d5d6 . . . . Prove that for every positive

integer n, at least one of the base-3 digits dn, dn+1, dn+2, ... , d2n is nonzero.

Solution: We will show the slightly stronger result that at least one digit dn+1, dn+2, ... , d2n is nonzero.
(This was the originally intended version of the problem.)

Thus, suppose otherwise, so that
√
53 = 2.d1 . . . dn−1dn00 . . . 0d2n+1 . . . . If we let k be the base-3 integer

2d1 . . . dn then we have 0 ≤
√
5− k

3n
≤ 2

32n+1
+

2

32n+2
+ · · · = 1

32n
.

Since 0 ≤ k

3n
≤
√
5, we also see that 0 ≤

√
5+

k

3n
≤ 2
√
5. Multiplying this inequality with the one from

above yields 0 ≤ 5− k2

32n
≤ 2
√
5

32n
, and then clearing the denominators yields 0 ≤ 5 · 32n − k2 ≤ 2

√
5 < 5.

Since 5 · 32n − k2 is an integer, it must therefore be equal to 0, 1, 2, 3, or 4. It cannot be 0 because
√
5

is irrational.

Furthermore, we can see that 5 · 32n − k2 ≡ −k2 modulo 5, and therefore it cannot equal 2 or 3 (since
the only possible values of −k2 are 0, 1, 4 modulo 5).

Likewise, 5 ·32n−k2 ≡ −k2 modulo 3, and therefore it cannot equal 1 or 4 (since the only possible values
of −k2 are 0, 2 modulo 3).

This eliminates all of the possibilities, and therefore we have reached a contradiction. Thus, at least one
of the digits dn+1, dn+2, ... , d2n is nonzero, as claimed.

Remark: This argument can be simpli�ed to prove just the requested result: starting instead with 0 ≤
√
5− k

3n−1
≤ 1

32n
, we see 0 ≤

√
5+

k

3n−1
≤ 2
√
5, and so 0 ≤ 5− k2

32n−2
≤ 2
√
5

32n
. Then 0 ≤ 5 ·32n−2−k2 ≤

2
√
5

9
< 1, which is an immediate contradiction since 5 · 32n−2 − k2 is a nonzero integer.
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