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1. For n ≥ 1, let bn be the (n + 1)-digit base-10 integer whose �rst n digits are 6s and whose last digit is a 5.
Thus, for example, b4 = 66665. Find the sum of the digits of b22023.

Answer: 12145.

Solution: We will use the notation d · · · d︸ ︷︷ ︸
n

to indicate that the digit d is repeated n times. We can compute

b21 = 4225, b22 = 442225, b23 = 44422225, and b24 = 4444222225, so in general, it appears that if bn =
6 · · · 6︸ ︷︷ ︸

n

5, then b2n = 4 · · · 4︸ ︷︷ ︸
n

2 · · · 2︸ ︷︷ ︸
n+1

5.

To show this, �rst observe that 9 · 1 · · · 1︸ ︷︷ ︸
n

= 10n − 1, so 1 · · · 1︸ ︷︷ ︸
n

=
1

9
(10n − 1). Thus, we have bn =

2

3

(
10n+1 − 1

)
− 1 =

2

3
· 10n+1 − 5

3
. Now if we let cn = 4 · · · 4︸ ︷︷ ︸

n

2 · · · 2︸ ︷︷ ︸
n+1

5, we may write

cn = 4 · · · 4︸ ︷︷ ︸
n

·10n+2 + 2 · · · 2︸ ︷︷ ︸
n+1

·10 + 5

=
4

9
(10n − 1) · 10n+2 +

2

9
(10n+1 − 1) · 10 + 5

=
4

9
· 102n+2 − 4

9
· 10n+2 +

2

9
· 10n+2 − 20

9
+ 5

=
4

9
· 102n+2 − 2

9
· 10n+2 +

25

9

=

(
2

3
· 10n+1 − 5

3

)2

= b2n.

Thus, b2n has n digits that are 4, n + 1 digits that are 2, and 1 digit that is 5, for a total sum of

4n+ 2(n+ 1) + 5 = 6n+ 7, which with n = 2023 equals 12145 .

2. This is a relay problem. The answer to each part will be used in the next part.

(a) Suppose that a and b are nonnegative integers such that
√
a+
√
b =
√
2023. What is the least possible

value of |b− a| ?
Answer: 119.

Solution: Note that 2023 = 7 · 172. If
√
a+
√
b =
√
2023 then a = [

√
2023−

√
b]2 = 2023 + b− 34

√
7b.

Thus,
√
7b is a rational number (hence an integer, since it is the square root of an integer), which

means b must be 7 times a perfect square. By a symmetric argument, a is also 7 times a perfect
square. If a = 7c2 and b = 7d2 for some nonnegative integers c, d, the original equation becomes√
7c2 +

√
7d2 = 17

√
7 so that c + d = 17. There are then 18 possible pairs (c, d), namely (17,0),

(16,1), ... , (0,17), yielding 18 possible pairs (a, b). The least possible value of |b − a| occurs
when c, d are as close together as possible, which occurs for (c, d) = (8, 9) or (9, 8), in which case

|b− a| = 7(92 − 82) = 119 .

(b) Let A be the answer to part (a). Suppose that
√
A log√A x = (logx

√
A)5. What is the value of the

expression (A+ 1) logA(
1
4 log

√
x A)?
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Answer: 10.

Solution: Note that logx
√
A =

1

log√A x
so the given information says equivalently that (logx

√
A)6 =

√
A so that logx

√
A = A1/12. Then logx A = 2 logx

√
A = 2A1/12 so logA x =

1

logx A
=

1

2
A−1/12

so logA
√
x =

1

4
A−1/12 so log√x A = 4A1/12. Then logA(

1
4 log

√
x A) = logA A1/12 = 1/12. Since

A+ 1 = 120, the answer is 120 · 1
12

= 10 .

(c) Let B be the answer to part (b). The VMTS Agency has a total of 12 covert operatives it sends on
secret missions, but unbeknownst to the Agency, one of its operatives is a double agent. Each mission
will normally succeed, but if the double agent is sent then the mission only has a 50% chance of success.
The Agency has one mission each month: Operative 1 is sent on a mission in January, Operatives 1 and
2 are sent on a mission in February, and so forth, and Operatives 1-12 are on a mission in December.
If the December mission fails but the others succeed, what is the probability that Operative B is the
double agent?

Answer: 512/4095.

Solution: Suppose the double agent is operative n. Then each of the �rst n − 1 missions (1 through
n− 1 inclusive) will succeed, but the remaining 13−n missions (n through 12 inclusive) each have a
1/2 probability of failing. Therefore, the probability that missions 1 through 11 succeed but mission
12 fails given that operative n is the double agent is (1/2)13−n. Since each operative is equally likely
to be the double agent ahead of time, the total probability of having missions 1 through 11 succeed

and 12 fail is
1

12

∑12
n=1(1/2)

13−n =
1

12
[
1

2
+

1

4
+ · · ·+ 1

212
] =

1

12
· 2

12 − 1

212
.

Since the probability that B is the double agent and missions 1 through 11 succeed and 12 fails is
1

12
· (1
2
)13−B , the conditional probability that operative B is the double agent given that missions 1

through 11 succeed and 12 fails is

1

12
(
1

2
)13−B

1

12
· 2

12 − 1

212

=
2B−1

212 − 1
. Since B = 10, this is

29

212 − 1
=

512

4095
.

3. Suppose f(x) is a function such that f(x) + f

(
2x− 1

x+ 1

)
+ f

(
x− 2

2x− 1

)
= 20x+ 23 for all x 6= −1, 1/2. Find

the value of f(5).

Answer: −20/27.
Solution: Setting x = 5, x = 3/2, x = 4/5, x = 1/3, x = −1/4, and x = −2 respectively yield

f(5) + f(3/2) + f(1/3) = 123

f(3/2) + f(4/5) + f(−1/4) = 53

f(4/5) + f(1/3) + f(−2) = 39

f(1/3) + f(−1/4) + f(5) = 89/3

f(−1/4) + f(−2) + f(3/2) = 18

f(−2) + f(5) + f(4/5) = −17.

This is now a system of 6 linear equations in the six values f(5), f(3/2), f(4/5), f(1/3), f(−1/4), f(−2)
which may now be solved directly by the standard procedure of successive variable eliminations. More
e�ciently, we can get the desired answer directly by labeling the equations (#1) through (#6) and then
taking the linear combination 2(#1) − (#2) − 4(#3) + 2(#4) − (#5) + 5(#6): after simplifying this

yields 9f(5) = −20/3, so that f(5) = −20/27 . (The other values can be computed similarly, yielding

f(3/2) = 1847/27, f(4/5) = 253/27, f(1/3) = 1492/27, f(−1/4) = −671/27, f(−2) = −692/27.)

Remark: The same method for arbitrary x yields six linear equations for f(x), f(
2x− 1

x+ 1
), f(

x− 1

x
), f(

x− 2

2x− 1
),

f(
1

1− x
), and f(

x+ 1

−x+ 2
). Solving gives f(x) =

80x6 − 462x5 + 315x4 − 260x3 + 285x2 + 162x− 160

18x5 − 45x4 + 45x2 − 18x
;

this function satis�es the given condition, and it is the unique solution to the problem.
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4. Regular tetrahedraABCD, BCDE, CDEF ,DEFG, and EFGH have disjoint interiors. Calculate cos∠AFH.

Answer: −35/54.
Solution: Here is a plot of the �ve tetrahedra together with the vertices labeled:

Assign coordinates to the vertices of the tetrahedra. Starting with A = (0, 0, 54
√
2) B = (−27

√
3,−27, 0),

C = (27
√
3,−27, 0), and D = (0, 54, 0), we can see AB = AC = AD = BC = BD = CD = 54

√
3, so

ABCD is regular. Since ABCD and BCDE are both regular tetrahedra, we see that E is the re�ection
of A across the plane BCD. By symmetry the midpoint of EA is the centroid of BCD, which has

coordinates
1

3
(B + C +D) = (0, 0, 0). Then E = 2(0, 0, 0)−A = (0, 0,−54

√
2).

In the same way, since BCDE and CDEF are regular tetrahedra, F is the re�ection of B through the

centroid of CDE, which has coordinates
1

3
(C+D+E), so F = 2· 1

3
(C+D+E)−B = (45

√
3, 45,−36

√
2).

Similarly, G = 2 · 1
3
(D + E + F ) − C = (3

√
3, 93,−60

√
2), and H = 2 · 1

3
(E + F + G) − D =

(32
√
3, 38,−100

√
2).

From the law of cosines in triangle AFH, we have AH2 = AF 2 + FH2 − 2 · AF · FH · cos∠AFH.
Using the coordinates we have calculated, we obtain AH2 = (32

√
3)2 + 382 + (154

√
2)2 = 51948,

AF 2 = (45
√
3)2 + 452 + (90

√
2)2 = 452 · 12 so AF = 90

√
3, and FH = 54

√
3 since it is simply one edge

of tetrahedron EFGH which is congruent to ABCD. Thus we see cos∠AFH =
AF 2 + FH2 −AH2

2 ·AF · FH
=

902 · 3 + 542 · 3− 51948

2 · 90
√
3 · 54

√
3

=
−18900

2 · 90 · 54 · 3
= −35

54
.
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5. Suppose that a and b are positive integers with a > b such that a2 + ab + b2 divides a2b + ab2. Find the

greatest real number x such that
(a− b)3

ab
> x for all such pairs (a, b).

Answer: x = 3.

Solution: First, we will prove that the pairs (a, b) satisfying the given condition are those having the form
a = kr(r2 + rs+ s2) and b = ks(r2 + rs+ s2) for arbitrary positive integers k, r, s with r > s.

First, all such pairs work: clearly with r > s we have a > b, and then since a2+ab+b2 = k2(r2+rs+s2)3

while a2b + ab2 = k3rs(r + s)(r2 + rs + s2)3 = krs(r + s) · (a2 + ab + b2) we see a2 + ab + b2 divides
a2b+ ab2.

Now we show all pairs are of this form, so suppose that a > b and that a2 + ab + b2 divides a2b + ab2.
Let gcd(a, b) = d so that a = rd and b = sd where gcd(r, s) = 1.

Then the given condition says that a2 + ab+ b2 = d2(r2 + rs+ s2) divides a2b+ ab2 = d3rs(r+ s)(r− s),
so cancelling d2 shows that r2 + rs+ s2 divides drs(r + s)(r − s),

But gcd(r2+rs+s2, r) = gcd(s2, r) = 1 and likewise gcd(r2+rs+s2, s) = 1, so the condition is equivalent
to saying that r2 + rs+ s2 divides d(r + s)(r − s).

But also gcd(r2+rs+s2, (r+s)2) = gcd(r2+rs+s2, rs) = 1 since r2+rs+s2 is relatively prime to both
r and s as shown above, we have gcd(r2+rs+s2, r+s) = 1 as well. Likewise, gcd(r2+rs+s2, (r−s)2) =
gcd(r2 + rs+ s2, rs) = 1.

Therefore in fact r2 + rs+ s2 divides d, meaning d = k(r2 + rs+ s2) for some positive integer k.

This yields a = kr(r2 + rs+ s2) and b = ks(r2 + rs+ s2), where to ensure a > b we require r > s. This
is the desired form, so the solutions are as claimed.

Now we analyze the ratio
(a− b)3

ab
. We claim that

(a− b)3

ab
> 3, but that 3 cannot be replaced by any

larger constant.

With a = kr(r2 + rs + s2) and b = ks(r2 + rs + s2), we have (a − b)3 = k3(r − s)3(r2 + rs + s2)3 and

ab = k2rs(r2 + rs+ s2)2, so we have the ratio
(a− b)3

ab
= k(r − s)3(1 + r/s+ s/r).

Now, we have k ≥ 1 since k is a positive integer, (r − s)3 ≥ 1 since r − s is a positive integer (since
a > b), and 1 + r/s + s/r ≥ 3 by the inequality y + 1/y ≥ 2 which holds for positive y and has
equality only when y = 1 (it follows either by the arithmetic-geometric mean inequality or by noting that

y− 2+1/y = (
√
y− 1/

√
y)2). Putting these all together yields

(a− b)3

ab
≥ 3, which is nearly the claimed

result. But in fact, equality cannot hold here, as it would require k = 1, r = s + 1 for (r − s)3 = 1,
and r = s for 1 + r/s + s/r = 3, and these last two conditions are incompatible. Therefore, we have
(a− b)3

ab
> 3 for all solution pairs (a, b), as required.

On the other hand, no constant greater than 3 will work, since if we take k = 1 and r = s + 1, so that

a = (s + 1)(3s2 + 3s + 1) and b = s(3s2 + 3s + 1), then we have
(a− b)3

ab
=

(3s2 + 3s+ 1)3

s(s+ 1)(3s2 + 3s+ 1)
=

3s2 + 3s+ 1

s(s+ 1)
= 3 +

1

s(s+ 1)
, which can be made arbitrarily close to 3 for large enough s. Therefore the

constant cannot be replaced by any value larger than 3.

Since
(a− b)3

ab
> 3 but there exist pairs with the ratio arbitrarily close to 3, the greatest x with

(a− b)3

ab
>

x is x = 3 .

Remark: In fact, the pairs with a = (s+1)(3s2 +3s+1) and b = s(3s2 +3s+1) are the only ones with the
ratio (a− b)3/(ab) less than 6: if k ≥ 2 then the ratio is at least 6, and if r − s ≥ 2 then the ratio is at
least 24.
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6. Alice and Bob are playing a game in which they color lattice points in the plane. Alice and Bob alternate
turns, with Alice going �rst. On her turns, Alice colors one point red, while on his turns, Bob colors all points
blue on a line parallel to the x-axis or the y-axis. Points may only be colored once, so Alice cannot color any
point on a line that Bob has already colored, and Bob cannot color any line containing a point that Alice
has already colored. Alice's goal is to color n consecutive points red along a line parallel to the x-axis or the
y-axis, while Bob's goal is to prevent her from doing so. Determine, with proof, all n for which Alice can win
the game assuming optimal play. (Partial credit will be o�ered for providing some values of n for which Alice
can win the game.)

Answer: In fact, Alice can win for any n.

Solution: Reinterpret the game as follows: the players color points on the x-axis and the y-axis. Alice colors
red any pair (x = a, y = b) on her turn where neither a nor b is colored blue, while Bob colors blue one
point (either x = c or y = d) that is not already colored red. Bob is prevented from playing at any point
whose coordinates are both red, so Alice can (if desired) eventually color all such points red. Alice's goal
is to create an interval on at least one axis of length n: she then can mark any point on the other axis,
and then �ll in the requisite interval in the plane.

Fix n. De�ne an interval {x+1, x+2, ..., x+k} of red points to be �alive� if none of {x+k+1, ..., x+n}
are blue: in other words, if it is still possible for Alice to color additional points on the interval's right
end to make a red interval of length n.

We show by induction that Alice can create an arbitrarily large number of alive intervals of length k, for
each k.

Base case: k = 1. Alice plays at (0, 0), (n, n), (2n, 2n), (3n, 3n), .... Each play creates two alive intervals
(one on each axis), and each of Bob's moves can only remove one of them. So Alice can make arbitrarily
many alive intervals.

Inductive step. Assume Alice has arbitrarily many alive intervals of length k. Then there must be at
least k + 1 of them on one axis. Without loss of generality, suppose it is the x-axis. Also suppose the
�rst unselected x-coordinate of each is x1, x2, ... , xk+1. Pick any value of y more than n greater than
any selected y-coordinate so far, and have Alice take the points (x1, y + 1), (x2, y + 2), (x3, y + 3), ... ,
(xk+1, y + k + 1). If one of these points is unavailable because of one of Bob's moves, Alice plays in the
same row or column if available, and otherwise Alice plays anywhere. Now, if all of her moves succeed,
she will have created at least k + 2 intervals of length k + 1. Each of Bob's turns can only block one
of these k + 2 intervals, so Alice succeeds in creating at least one alive interval of length k + 1. Since
she has an arbitrary supply of alive intervals of length k, she can repeat this process arbitrarily many
times. If at any point Bob tries to play a move to destroy one of Alice's previously-made length-(k + 1)
intervals, Bob's lost move will just allow Alice to create another length-(k+ 1) interval. Thus, Alice can
make arbitrarily many alive intervals of length k + 1, as claimed.

So by induction, Alice can make an arbitrary number of alive intervals of length k for any k. In particular,
she can make an interval of length n on one axis. If she chooses any other red value on the other axis,
Bob cannot prevent her from �lling in an interval of length n, so Alice can win the game.
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