Vermont Mathematics Talent Search, Solutions to Test 3, 2023-2024

Test and Solutions by Kiran MacCormick and Evan Dummit

February 23, 2024

1. There exist unique positive integers $a_{1}, a_{2}, a_{3}, \ldots, a_{2024}, b$ with $\sqrt{2024}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ddots+\frac{1}{a_{2024}+\frac{1}{\sqrt{2024}+b}}}}}$.

Find the sum $a_{1}+a_{2}+\cdots+a_{2024}+b$.
Remark: There was a typographical error in the published statement of the problem, which had $\sqrt{2024}-b$ in the denominator of the final term rather than $\sqrt{2024}+b$. As stated, the only possible choice of integral values of $a_{1}, \ldots, a_{2024}, b$ required $b=-44$, contrary to the problem's statement that all of the integers were positive. Therefore, the responses with $b=44$ and with $b=-44$ were both accepted.
Answer: 90068.
Solution: Since a_{2} is a positive integer, the fraction on the right-hand side is between 0 and 1 , and therefore we have $a_{1}<\sqrt{2024}<a_{1}+1$. Since $\sqrt{2024} \approx 44.9889$ this means $a_{1}=44$. Then $a_{2}+$ $\frac{1}{a_{3}+\cdots+\frac{1}{a_{2024}+\frac{1}{\sqrt{2024}-b}}}=\frac{1}{\sqrt{2024}-44}=\frac{\sqrt{2024}+44}{2024-44^{2}}=\frac{\sqrt{2024}+44}{88} \approx 1.0112$. By the same
logic, since the fraction on the right-hand side is between 0 and 1 , the only possibility is to have $a_{2}=1$. Then $a_{3}+\cdots \frac{1}{a_{2024}+\frac{1}{\sqrt{2024}-b}}=\frac{88}{\sqrt{2024}-44}=44+\sqrt{2024}$. Continuing in this way we see that
$a_{3}=88$, and then $a_{4}+\frac{1}{a_{5}+\cdots+\frac{1}{a_{2024}}}=\frac{1}{\sqrt{2024}-44}$. At this point the pattern begins repeating
since the "leftover" term is the same as with a_{2}. So we see $a_{2}=a_{4}=a_{6}=\cdots=a_{2024}=1$ and $a_{3}=a_{5}=a_{7}=\cdots=a_{2023}=88$, and then $b=44$.
Hence the desired sum $a_{1}+a_{2}+\cdots+a_{2024}+b=44+1012 \cdot 1+1011 \cdot 88+44=1012 \cdot 89=90068$.
2. The function $f(x)=\frac{a x+b}{c x+d}$ with a, b, c, d nonzero has the properties that $f(20)=20, f(24)=24$, and $f(f(x))=x$ for all $x \neq-d / c$. Find the sum of all integers n for which $f(n)$ is an integer.

Answer: 132.
Solution: Since c is nonzero, by rescaling all coefficients we can assume that $c=1$. Then we compute $f(f(x))=\frac{a \frac{a x+b}{x+d}+b}{\frac{a x+b}{x+d}+d}=\frac{a(a x+b)+b(x+d)}{(a x+b)+d(x+d)}=\frac{\left(a^{2}+b\right) x+(a b+b d)}{(a+d) x+\left(b+d^{2}\right)}$. In order for this function to simplify to x, the constant term in the numerator and the x-coefficient in the denominator must be zero, and also $a^{2}+b$ must equal $b+d^{2}$. Therefore we must have $a+d=0$, and indeed when $d=-a$ we also have $a b+b d=0$ and $a^{2}+b=b+d^{2}$, so $f(f(x))$ does simplify to x. This means $f(x)=\frac{a x+b}{x-a}$ for some a, b. Then $f(20)=20$ and $f(24)=24$ yield $20=\frac{20 a+b}{20-a}$ and $24=\frac{24 a+b}{24-a}$ so clearing denominators and rearranging to isolate b yields $20(20-a)-20 a=b=24(24-a)-24 a$, which in turn yields $20^{2}-24^{2}=-4 a$ so that $a=22$ and then $b=20(20-a)-20 a=-480$.
Then $f(n)=\frac{22 n-480}{n-22}=22+\frac{4}{n-22}$. This quantity is an integer precisely when $n-22$ divides 4 , meaning $n-22=-4,-2,-1,1,2,4$ so that $n=18,20,21,23,24,26$. The sum of these values of n is $6 \cdot 22=132$.
3. This is a relay problem. The answer to each part will be used in the next part.
(a) Archimedes stacks an infinite tower of spherical marbles, with centers along a vertical line. Each marble's diameter is $2 / 3$ the diameter of the marble below it, and the total height of the marbles is 1 unit. If the total volume of all of Archimedes' marbles is V cubic units, what is the value of V ?
Answer (a): $\pi / 114$.
Solution (a): If the bottom marble has radius r, then the total height is $2 r+\frac{2}{3} \cdot 2 r+\left(\frac{2}{3}\right)^{2} \cdot 2 r+\cdots=$ $\frac{2 r}{1-2 / 3}=6 r$ by the formula for the sum of a geometric series. Therefore, we have $r=1 / 6$ and so the volume of the largest marble is $\frac{4}{3} \pi r^{3}=\frac{\pi}{162}$. Each marble has volume $\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$ the marble below it, so the total volume of the marbles is $\frac{4}{3} \pi\left(1+\frac{8}{27}+\left(\frac{8}{27}\right)^{2}+\cdots\right)=\frac{\pi / 162}{1-8 / 27}=\frac{\pi / 162}{19 / 27}=\frac{\pi}{114}$ cubic units.
(b) Let A be the answer to part (a) and let $N=\pi / A$. If $\sqrt{M+4 \sqrt{N}}=\sqrt{a}+\sqrt{b}$ for some positive integers a and b, and $30<M<50$, find the value of M.
Answer (b): 43.
Solution (b): Squaring both sides yields $a+b+2 \sqrt{a b}=M+4 \sqrt{N}$. Since a and b are integers and $N=114$ is not a square, we must have $a+b=M$ and $2 \sqrt{a b}=4 \sqrt{N}$ so that $a b=4 N=456=2^{3} \cdot 3 \cdot 19$. Looking at possible factor pairs of $a b$, we see that the only factor pairs with both terms less than 50 are $(12,38)$ and $(19,24)$. But $12+38=50$ which is not allowed, so we must have a and b equal to 19 and 24 in some order. Then $M=a+b=43$.
(c) Let B be the answer to part (b). In triangle $P Q R$, side $P R$ is three times the length of side $Q R$, and side $P Q$ has length $28 \sqrt{3}$. Point S is chosen on side $P Q$ such that segment $R S$ bisects angle R. If segment $R S$ has length \sqrt{B}, what is the length of side $P R$?
Answer (c): $22 \sqrt{3}$.
Solution (c): Suppose $P R$ has length a so that $Q R$ has length $a / 3$. Then by the angle bisector theorem, we have $P S / Q S=P R / Q R=a /(a / 3)=3$ so since $P S+Q S=P Q=28 \sqrt{3}$ we have $P S=21 \sqrt{3}$ and $Q S=7 \sqrt{3}$. Now by Stewart's theorem, we have $(a / 3)^{2} \cdot(21 \sqrt{3})+a^{2} \cdot(7 \sqrt{3})=(\sqrt{B})^{2} \cdot 28 \sqrt{3}+$ $7 \sqrt{3} \cdot 21 \sqrt{3} \cdot 28 \sqrt{3}$, so multiplying by $\sqrt{3}$ and simplifying yields $28 a^{2}=28 \cdot 3 B+7 \cdot 21 \cdot 28 \cdot 9$. Dividing by 28 yields $a^{2}=3\left(B+21^{2}\right)=3(43+441)=3 \cdot 484$ and so $a=\sqrt{3 \cdot 484}=22 \sqrt{3}$.
4. Let r be the unique real number between 0 and 1 such that $r^{5}+3 r^{2}+3 r-1=0$. If $a_{1}<a_{2}<a_{3}<a_{4}<\cdots$ is a strictly increasing sequence of positive integers such that $r^{a_{1}}+r^{a_{2}}+r^{a_{3}}+r^{a_{4}}+\cdots=\frac{1}{3}$, find a_{2024}.

Answer: 5057.
Solution: Suppose that $r^{5}+3 r^{2}+3 r-1=0$. Then $3\left(r+r^{2}\right)=1-r^{5}$ and so $\frac{1}{3}=\frac{r+r^{2}}{1-r^{5}}$. Now since $0<r<1$ we have the geometric series evaluation $1+r^{5}+r^{10}+r^{15}+\cdots+r^{5 n}+\cdots=\frac{1}{1-r^{5}}$. Thus, multiplying by $r+r^{2}$ yields $\left(r+r^{2}\right)\left(1+r^{5}+r^{10}+r^{15}+\cdots\right)=\frac{r+r^{2}}{1-r^{5}}=\frac{1}{3}$, and so expanding yields the evaluation $r+r^{2}+r^{6}+r^{7}+r^{11}+r^{12}+\cdots+r^{5 n+1}+r^{5 n+2}+\cdots=\frac{1}{3}$. Thus, taking $a_{2 n+1}=5 n+1$ and $a_{2 n+2}=5 n+2$ for $n \geq 0$ has the desired property. Then $a_{2024}=5 \cdot 1011+2=5057$.
Remark: The solutions of the polynomial $r^{5}+3 r^{2}+3 r-1=0$ are $0.263485,-1.07025 \pm 0.53000 i$, and $0.93851 \pm 1.33419 i$ to five decimal places, so the polynomial does have a unique real root r with the given property. (More rigorously, $p(r)=r^{5}+3 r^{2}+3 r-1$ has $p(0)=-1$ and $p(1)=6$, so since $p(r)$ is continuous and its derivative $p^{\prime}(r)=5 r^{4}+6 r$ is positive on $(0,1)$, it is increasing hence has a unique root in this interval. Indeed, since $p(1 / 2)=49 / 32>0$, the root is actually between 0 and $1 / 2$.)
The problem statement also implies that the sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is unique. Here is a proof of this statement: suppose that $r^{a_{1}}+r^{a_{2}}+\cdots=r^{b_{1}}+r^{b_{2}}+\cdots$ for two distinct sequences $\left\{a_{1}, a_{2}, \ldots\right\}$ and $\left\{b_{1}, b_{2}, \ldots\right\}$. Subtracting the sequences yields an equation of the form $c_{1} r+c_{2} r^{2}+c_{3} r^{3}+c_{4} r^{4}+\cdots=0$ where each c_{1} is either 1,0 , or -1 , and not all of the coefficients are zero. Dividing by the power of r with the first nonzero coefficient, and then rescaling by ± 1, we may assume the expression is of the form $d_{1} r+d_{2} r^{2}+d_{3} r^{3}+\cdots=1$ where each d_{i} is 1,0 , or -1 . But by the triangle inequality we have $\left|d_{1} r+d_{2} r^{2}+d_{3} r^{3}+\cdots\right| \leq r+r^{2}+r^{3}+\cdots=1 /(1-r)<1$ because $r<1 / 2$ as noted above, which is a contradiction.
5. Five points are chosen randomly and independently on the circumference of the unit circle $x^{2}+y^{2}=1$. What is the probability that it is possible to rotate the circle in such a way that all five points land in the first quadrant?

Answer: 5/256.
Solution: For each of the five points P_{i} for $1 \leq i \leq 5$, let E_{i} be the event that the other four points land within the quarter-circle counterclockwise arc starting at P_{i}. Then $P\left(E_{i}\right)=(1 / 4)^{4}=1 / 256$ since the locations of the other four points are collectively independent and each has a $1 / 4$ probability of landing within that quarter-circle. The events E_{i} are disjoint, since if E_{i} occurs then the other four points are within the quarter-circle immediately counterclockwise of P_{i}, which precludes P_{i} from landing in the quarter-circle immediately counterclockwise of any other P_{j}. Finally observe that the desired event, that the circle can be rotated so that all five points land in the first quadrant, is simply the union $E_{1} \cup E_{2} \cup E_{3} \cup E_{4} \cup E_{5}$: if any E_{i} occurs we can rotate the point P_{i} to be at $(1,0)$ and then all five points lie in the first quadrant. Conversely, if we can rotate the circle as desired and P_{i} is the point closest to the x-axis, then all four points lie in the counterclockwise quarter-circle starting at P_{i}, meaning that event E_{i} occurs.
Thus the desired probability is $P\left(E_{1} \cup E_{2} \cup E_{3} \cup E_{4} \cup E_{5}\right)=5 \cdot(1 / 4)^{4}=5 / 256$.
6. For a positive integer n, its "repetition level" is defined to be the smallest number of distinct digits required to write some positive multiple of n in base 10 . For example, the number 21 has repetition level 1 , because 333,333 is divisible by 21 and only requires 1 distinct digit to write.
(a) Show that every positive integer has a repetition level less than or equal to 2 .
(b) Let $N \geq 1000$. Show that between 16% and 17% (inclusive) of the integers $\{1,2,3, \ldots, N\}$ have repetition level 2.

Solution (a): Consider the integers $1,11,111,1111, \ldots, 111 \ldots 1$ where the last integer has $n+1$ digits. By the pigeonhole principle, two of these must be congruent modulo n. Their difference is a number of the form 111... $1000 \ldots 0$ that is divisible by n. This number has only two distinct digits, so n has repetition level at most 2.

Remark: As noted by several solvers, the statement of part (b) does not hold for all N (for example, $N=1232$, for which the proportion is $210 / 1232 \approx 17.045 \%$). The percentage for $N \geq 1000$ should have been stated between 16% and 18%. Full credit in (b) was awarded for a valid proof of the characterization of integers having repetition level 2 along with either a counterexample to the claimed bound or an argument that the proportion tends to 17% as N tends to ∞.
Solution (b): We investigate more precisely the repetition level. First, the argument from (a) actually shows that integers relatively prime to 10 have repetition level 1 , because if such an integer divides $111 \ldots 1000 \ldots 0$ then it must divide 111...1.
Now we break into cases based on the number of factors of 2 or 5 in the prime factorization of n.

- At least one 2, at least one 5: Then n ends in a 0 , as does any multiple of n. Such multiples must have at least 2 different digits since they are positive, so n has repetition level 2 .
- No 2 s , one 5: By the above, $n / 5$ divides some integer $111 \ldots 1$ so n divides $555 \ldots 5$. Then n has repetition level 1.
- No 2s, at least two 5s: Any integer $k k k \ldots k$ equals k times $111 \ldots 1$ and since $111 \ldots 1$ is not divisible by 5 and k has at most one factor of 5 , no such integer is a multiple of n. So n has repetition level 2 .
- At most three 2 s , no 5 s : By the above, $n / 2, n / 4$, or $n / 8$ (whichever is an odd integer) divides some integer $111 \ldots 1$ so n divides $888 \ldots 8$. Then n has repetition level 1 .
- At least four 2 s : Any integer $k k k \ldots k$ equals k times $111 \ldots 1$ and since $111 \ldots 1$ is odd and k has at most three factors of 2 , no such integer is a multiple of n. So n has repetition level 2 .
We conclude that the repetition level of n equals 2 if and only if $10|n, 16| n$, or $25 \mid n$. By inclusionexclusion, the number of such integers less than or equal to N is $\lfloor N / 10\rfloor+\lfloor N / 16\rfloor+\lfloor N / 25\rfloor-\lfloor N / 80\rfloor-$ $\lfloor N / 50\rfloor-\lfloor N / 400\rfloor+\lfloor N / 400\rfloor$, which is at least $17 N / 100-4$ and at most $17 N / 100+3$. So the proportion is between $(17-400 / N) \%$ and $(17+300 / N) \%$, which since $N \geq 1000$ is inside the desired range of 16% to 18%.

